Experimental investigations on the performance of a collector¬タモstorage wall system using phase change materials

نویسندگان

  • Guobing Zhou
  • Mengmeng Pang
چکیده

Experiments have been performed on the thermal behavior of a collector–storage wall system using PCM (phase change material). PCM slabs were attached on the gap-side wall surface to increase the heat storage. The test was carried out for a whole day with charging period of 6.5 h and discharging period of 17.5 h, respectively. Wall and air temperatures as well as air velocity in the gap were measured for analysis. The results showed that the PCM surface temperature increases first rapidly, then slowly and rapidly again during the charging process, which in turn corresponds with the three storage stages: sensible heat (solid), latent heat (melting) and sensible heat (liquid), respectively; while in the discharging process the PCM surface temperature decreases slightly shortly after the initial sharp drops, which suggests the long time period of solidification for PCM to release latent heat. Subject to the variations of PCM surface temperatures, similar trends were also found for the gap air temperatures, glazing temperature and indoor temperature. Both the air flow rate and heating rate by air circulation have up and down fluctuations during the charging period, and then, shortly after initial sharp drops, they keep at nearly steady values during the discharging period. The indoor temperature was found to be above 22 C during the whole discharging period (17.5 h) under present conditions, which indicates that the indoor thermal comfort could be kept for a long time by using PCM in collector–storage wall system. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

Optimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions

Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...

متن کامل

Optimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions

Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...

متن کامل

Experimental investigation on the effect of phase change materils (PCM) in solar compression refrigeration cycle efficiency

Saving energy is one of the most important challenges of todaychr('39')s world. Reducing electrical energy consumption in compressed air systems is one of the essential requirements for designing these systems. When using domestic air conditioners (dual air conditioners) in very hot areas (Khuzestan) their performance decreases and electric current consumption increases. Therefore, the use of n...

متن کامل

Experimental investigation of thermal and electrical performances of a nanofluid-cooled photovoltaic/thermal system equipped with a sheet-and-grooved serpentine tube collector

Introduction: In the present experimental investigation, the thermal and electrical performances of a photovoltaic/thermal system equipped with a sheet-and-grooved serpentine tube collector are investigated. The water-magnetite nanofluid is used as the heat transfer fluid. The effect of nanoparticle volume concentration (0-1%), nanofluid mass flow rate (10-40 kg/h) and groove pitch (0, 0.54 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016